Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Neuropathol Exp Neurol ; 82(4): 283-295, 2023 03 20.
Article in English | MEDLINE | ID: covidwho-2274412

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continually evolving resulting in variants with increased transmissibility, more severe disease, reduced effectiveness of treatments or vaccines, or diagnostic detection failure. The SARS-CoV-2 Delta variant (B.1.617.2 and AY lineages) was the dominant circulating strain in the United States from July to mid-December 2021, followed by the Omicron variant (B.1.1.529 and BA lineages). Coronavirus disease 2019 (COVID-19) has been associated with neurological sequelae including loss of taste/smell, headache, encephalopathy, and stroke, yet little is known about the impact of viral strain on neuropathogenesis. Detailed postmortem brain evaluations were performed for 22 patients from Massachusetts, including 12 who died following infection with Delta variant and 5 with Omicron variant, compared to 5 patients who died earlier in the pandemic. Diffuse hypoxic injury, occasional microinfarcts and hemorrhage, perivascular fibrinogen, and rare lymphocytes were observed across the 3 groups. SARS-CoV-2 protein and RNA were not detected in any brain samples by immunohistochemistry, in situ hybridization, or real-time quantitative PCR. These results, although preliminary, demonstrate that, among a subset of severely ill patients, similar neuropathological features are present in Delta, Omicron, and non-Delta/non-Omicron variant patients, suggesting that SARS-CoV-2 variants are likely to affect the brain by common neuropathogenic mechanisms.


Subject(s)
COVID-19 , Stroke , Humans , SARS-CoV-2 , Neuropathology
2.
Clin Infect Dis ; 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2284696

ABSTRACT

BACKGROUND: SARS-CoV-2 reinfection is poorly understood, partly because few studies have systematically applied genomic analysis to distinguish reinfection from persistent RNA detection related to initial infection. We aimed to evaluate the characteristics of SARS-CoV-2 reinfection and persistent RNA detection using independent genomic, clinical, and laboratory assessments. METHODS: All individuals at a large academic medical center who underwent a SARS-CoV-2 nucleic acid amplification test (NAAT) ≥ 45 days after an initial positive test, with both tests between March 14th and December 30th, 2020, were analyzed for potential reinfection. Inclusion criteria required having ≥2 positive NAATs collected ≥45 days apart with a cycle threshold (Ct) value <35 at repeat testing. For each included subject, likelihood of reinfection was assessed by viral genomic analysis of all available specimens with a Ct value <35, structured Ct trajectory criteria, and case-by-case review by infectious diseases physicians. RESULTS: Among 1,569 individuals with repeat SARS-CoV-2 testing ≥45 days after an initial positive NAAT, 65 (4%) met cohort inclusion criteria. Viral genomic analysis characterized mutations present, and was successful for 14/65 (22%) subjects. Six subjects had genomically-supported reinfection and eight subjects had genomically-supported persistent RNA detection. Compared to viral genomic analysis, clinical and laboratory assessments correctly distinguished reinfection from persistent RNA detection in 12/14 (86%) subjects but missed 2/6 (33%) genomically-supported reinfections. CONCLUSION: Despite good overall concordance with viral genomic analysis, clinical and Ct value-based assessments failed to identify 33% of genomically-supported reinfections. Scaling-up genomic analysis for clinical use would improve detection of SARS-CoV-2 reinfections.

4.
Clin Infect Dis ; 2022 May 25.
Article in English | MEDLINE | ID: covidwho-2234374

ABSTRACT

BACKGROUND: The Omicron variant of SARS-CoV-2 is highly transmissible in vaccinated and unvaccinated populations. The dynamics governing its establishment and propensity towards fixation (reaching 100% frequency in the SARS-CoV-2 population) in communities remain unknown. In this work, we describe the dynamics of Omicron at three institutions of higher education (IHEs) in the greater Boston area. METHODS: We use diagnostic and variant-specifying molecular assays and epidemiological analytical approaches to describe the rapid dominance of Omicron following its introduction to three IHEs with asymptomatic surveillance programs. RESULTS: We show that the establishment of Omicron at IHEs precedes that of the state and region, and that the time to fixation is shorter at IHEs (9.5-12.5 days) than in the state (14.8 days) or region. We show that the trajectory of Omicron fixation among university employees resembles that of students, with a 2-3 day delay. Finally, we compare cycle threshold (Ct) values in Omicron vs. Delta variant cases on college campuses, and identify lower viral loads among college affiliates harboring Omicron infections. CONCLUSIONS: We document the rapid takeover of the Omicron variant at IHEs, reaching near-fixation within the span of 9.5-12.5 days despite lower viral loads, on average, than the previously dominant Delta variant. These findings highlight the transmissibility of Omicron, its propensity to rapidly dominate small populations, and the ability of robust asymptomatic surveillance programs to offer early insights into the dynamics of pathogen arrival and spread.

5.
Nat Commun ; 14(1): 574, 2023 02 02.
Article in English | MEDLINE | ID: covidwho-2221807

ABSTRACT

SARS-CoV-2 distribution and circulation dynamics are not well understood due to challenges in assessing genomic data from tissue samples. We develop experimental and computational workflows for high-depth viral sequencing and high-resolution genomic analyses from formalin-fixed, paraffin-embedded tissues and apply them to 120 specimens from six subjects with fatal COVID-19. To varying degrees, viral RNA is present in extrapulmonary tissues from all subjects. The majority of the 180 viral variants identified within subjects are unique to individual tissue samples. We find more high-frequency (>10%) minor variants in subjects with a longer disease course, with one subject harboring ten such variants, exclusively in extrapulmonary tissues. One tissue-specific high-frequency variant was a nonsynonymous mutation in the furin-cleavage site of the spike protein. Our findings suggest adaptation and/or compartmentalized infection, illuminating the basis of extrapulmonary COVID-19 symptoms and potential for viral reservoirs, and have broad utility for investigating human pathogens.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Mutation , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
6.
Patterns (N Y) ; 3(8): 100572, 2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-2015904

ABSTRACT

An app-based educational outbreak simulator, Operation Outbreak (OO), seeks to engage and educate participants to better respond to outbreaks. Here, we examine the utility of OO for understanding epidemiological dynamics. The OO app enables experience-based learning about outbreaks, spreading a virtual pathogen via Bluetooth among participating smartphones. Deployed at many colleges and in other settings, OO collects anonymized spatiotemporal data, including the time and duration of the contacts among participants of the simulation. We report the distribution, timing, duration, and connectedness of student social contacts at two university deployments and uncover cryptic transmission pathways through individuals' second-degree contacts. We then construct epidemiological models based on the OO-generated contact networks to predict the transmission pathways of hypothetical pathogens with varying reproductive numbers. Finally, we demonstrate that the granularity of OO data enables institutions to mitigate outbreaks by proactively and strategically testing and/or vaccinating individuals based on individual social interaction levels.

7.
Nat Biomed Eng ; 6(8): 932-943, 2022 08.
Article in English | MEDLINE | ID: covidwho-1873504

ABSTRACT

The widespread transmission and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) call for rapid nucleic acid diagnostics that are easy to use outside of centralized clinical laboratories. Here we report the development and performance benchmarking of Cas13-based nucleic acid assays leveraging lyophilised reagents and fast sample inactivation at ambient temperature. The assays, which we named SHINEv.2 (for 'streamlined highlighting of infections to navigate epidemics, version 2'), simplify the previously reported RNA-extraction-free SHINEv.1 technology by eliminating heating steps and the need for cold storage of the reagents. SHINEv.2 detected SARS-CoV-2 in nasopharyngeal samples with 90.5% sensitivity and 100% specificity (benchmarked against the reverse transcription quantitative polymerase chain reaction) in less than 90 min, using lateral-flow technology and incubation in a heat block at 37 °C. SHINEv.2 also allows for the visual discrimination of the Alpha, Beta, Gamma, Delta and Omicron SARS-CoV-2 variants, and can be run without performance losses by using body heat. Accurate, easy-to-use and equipment-free nucleic acid assays could facilitate wider testing for SARS-CoV-2 and other pathogens in point-of-care and at-home settings.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19/diagnosis , COVID-19/virology , COVID-19 Testing , CRISPR-Associated Proteins , Humans , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
8.
Science ; 376(6599): 1327-1332, 2022 06 17.
Article in English | MEDLINE | ID: covidwho-1861568

ABSTRACT

Repeated emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased fitness underscores the value of rapid detection and characterization of new lineages. We have developed PyR0, a hierarchical Bayesian multinomial logistic regression model that infers relative prevalence of all viral lineages across geographic regions, detects lineages increasing in prevalence, and identifies mutations relevant to fitness. Applying PyR0 to all publicly available SARS-CoV-2 genomes, we identify numerous substitutions that increase fitness, including previously identified spike mutations and many nonspike mutations within the nucleocapsid and nonstructural proteins. PyR0 forecasts growth of new lineages from their mutational profile, ranks the fitness of lineages as new sequences become available, and prioritizes mutations of biological and public health concern for functional characterization.


Subject(s)
COVID-19 , Genetic Fitness , SARS-CoV-2 , Bayes Theorem , COVID-19/virology , Genome, Viral , Humans , Mutation , Regression Analysis , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
9.
Cell Rep Med ; 3(4): 100583, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-1735052

ABSTRACT

The SARS-CoV-2 Delta variant rose to dominance in mid-2021, likely propelled by an estimated 40%-80% increased transmissibility over Alpha. To investigate if this ostensible difference in transmissibility is uniform across populations, we partner with public health programs from all six states in New England in the United States. We compare logistic growth rates during each variant's respective emergence period, finding that Delta emerged 1.37-2.63 times faster than Alpha (range across states). We compute variant-specific effective reproductive numbers, estimating that Delta is 63%-167% more transmissible than Alpha (range across states). Finally, we estimate that Delta infections generate on average 6.2 (95% CI 3.1-10.9) times more viral RNA copies per milliliter than Alpha infections during their respective emergence. Overall, our evidence suggests that Delta's enhanced transmissibility can be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on underlying population attributes and sequencing data availability.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , New England/epidemiology , Public Health , SARS-CoV-2/genetics
10.
Sci Rep ; 12(1): 1857, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1671608

ABSTRACT

Amid COVID-19, many institutions deployed vast resources to test their members regularly for safe reopening. This self-focused approach, however, not only overlooks surrounding communities but also remains blind to community transmission that could breach the institution. To test the relative merits of a more altruistic strategy, we built an epidemiological model that assesses the differential impact on case counts when institutions instead allocate a proportion of their tests to members' close contacts in the larger community. We found that testing outside the institution benefits the institution in all plausible circumstances, with the optimal proportion of tests to use externally landing at 45% under baseline model parameters. Our results were robust to local prevalence, secondary attack rate, testing capacity, and contact reporting level, yielding a range of optimal community testing proportions from 18 to 58%. The model performed best under the assumption that community contacts are known to the institution; however, it still demonstrated a significant benefit even without complete knowledge of the contact network.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19/transmission , Contact Tracing/methods , Epidemiological Models , Female , Humans , Male , Prevalence , Public Health
11.
Nat Med ; 28(5): 1083-1094, 2022 05.
Article in English | MEDLINE | ID: covidwho-1671607

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has demonstrated a clear need for high-throughput, multiplexed and sensitive assays for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses and their emerging variants. Here, we present a cost-effective virus and variant detection platform, called microfluidic Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (mCARMEN), which combines CRISPR-based diagnostics and microfluidics with a streamlined workflow for clinical use. We developed the mCARMEN respiratory virus panel to test for up to 21 viruses, including SARS-CoV-2, other coronaviruses and both influenza strains, and demonstrated its diagnostic-grade performance on 525 patient specimens in an academic setting and 166 specimens in a clinical setting. We further developed an mCARMEN panel to enable the identification of 6 SARS-CoV-2 variant lineages, including Delta and Omicron, and evaluated it on 2,088 patient specimens with near-perfect concordance to sequencing-based variant classification. Lastly, we implemented a combined Cas13 and Cas12 approach that enables quantitative measurement of SARS-CoV-2 and influenza A viral copies in samples. The mCARMEN platform enables high-throughput surveillance of multiple viruses and variants simultaneously, enabling rapid detection of SARS-CoV-2 variants.


Subject(s)
COVID-19 , Influenza, Human , COVID-19/diagnosis , Humans , Microfluidics , SARS-CoV-2/genetics
12.
R Soc Open Sci ; 9(1): 210948, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1666238

ABSTRACT

College campuses are vulnerable to infectious disease outbreaks, and there is an urgent need to develop better strategies to mitigate their size and duration, particularly as educational institutions around the world adapt to in-person instruction during the COVID-19 pandemic. Towards addressing this need, we applied a stochastic compartmental model to quantify the impact of university-level responses to contain a mumps outbreak at Harvard University in 2016. We used our model to determine which containment interventions were most effective and study alternative scenarios without and with earlier interventions. This model allows for stochastic variation in small populations, missing or unobserved case data and changes in disease transmission rates post-intervention. The results suggest that control measures implemented by the University's Health Services, including rapid isolation of suspected cases, were very effective at containing the outbreak. Without those measures, the outbreak could have been four times larger. More generally, we conclude that universities should apply (i) diagnostic protocols that address false negatives from molecular tests and (ii) strict quarantine policies to contain the spread of easily transmissible infectious diseases such as mumps among their students. This modelling approach could be applied to data from other outbreaks in college campuses and similar small population settings.

13.
Nat Microbiol ; 7(1): 108-119, 2022 01.
Article in English | MEDLINE | ID: covidwho-1574813

ABSTRACT

The global spread and continued evolution of SARS-CoV-2 has driven an unprecedented surge in viral genomic surveillance. Amplicon-based sequencing methods provide a sensitive, low-cost and rapid approach but suffer a high potential for contamination, which can undermine laboratory processes and results. This challenge will increase with the expanding global production of sequences across a variety of laboratories for epidemiological and clinical interpretation, as well as for genomic surveillance of emerging diseases in future outbreaks. We present SDSI + AmpSeq, an approach that uses 96 synthetic DNA spike-ins (SDSIs) to track samples and detect inter-sample contamination throughout the sequencing workflow. We apply SDSIs to the ARTIC Consortium's amplicon design, demonstrate their utility and efficiency in a real-time investigation of a suspected hospital cluster of SARS-CoV-2 cases and validate them across 6,676 diagnostic samples at multiple laboratories. We establish that SDSI + AmpSeq provides increased confidence in genomic data by detecting and correcting for relatively common, yet previously unobserved modes of error, including spillover and sample swaps, without impacting genome recovery.


Subject(s)
DNA Primers/standards , SARS-CoV-2/genetics , Sequence Analysis/standards , COVID-19/diagnosis , DNA Primers/chemical synthesis , Genome, Viral/genetics , Humans , Quality Control , RNA, Viral/genetics , Reproducibility of Results , Sequence Analysis/methods , Whole Genome Sequencing , Workflow
14.
Viruses ; 13(11)2021 11 21.
Article in English | MEDLINE | ID: covidwho-1551629

ABSTRACT

Many countries in sub-Saharan Africa have experienced lower COVID-19 caseloads and fewer deaths than countries in other regions worldwide. Under-reporting of cases and a younger population could partly account for these differences, but pre-existing immunity to coronaviruses is another potential factor. Blood samples from Sierra Leonean Lassa fever and Ebola survivors and their contacts collected before the first reported COVID-19 cases were assessed using enzyme-linked immunosorbent assays for the presence of antibodies binding to proteins of coronaviruses that infect humans. Results were compared to COVID-19 subjects and healthy blood donors from the United States. Prior to the pandemic, Sierra Leoneans had more frequent exposures than Americans to coronaviruses with epitopes that cross-react with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), SARS-CoV, and Middle Eastern respiratory syndrome coronavirus (MERS-CoV). The percentage of Sierra Leoneans with antibodies reacting to seasonal coronaviruses was also higher than for American blood donors. Serological responses to coronaviruses by Sierra Leoneans did not differ by age or sex. Approximately a quarter of Sierra Leonian pre-pandemic blood samples had neutralizing antibodies against SARS-CoV-2 pseudovirus, while about a third neutralized MERS-CoV pseudovirus. Prior exposures to coronaviruses that induce cross-protective immunity may contribute to reduced COVID-19 cases and deaths in Sierra Leone.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , SARS-CoV-2/immunology , Age Distribution , Alphacoronavirus/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antigens, Viral/immunology , Betacoronavirus/immunology , Blood Donors , Coronavirus Nucleocapsid Proteins/immunology , Cross Protection , Cross Reactions , Epitopes , Female , Humans , Male , Phosphoproteins/immunology , Sierra Leone , United States , Viral Pseudotyping
15.
Viruses ; 13(11)2021 11 06.
Article in English | MEDLINE | ID: covidwho-1502534

ABSTRACT

Obesity is a key correlate of severe SARS-CoV-2 outcomes while the role of obesity on risk of SARS-CoV-2 infection, symptom phenotype, and immune response remain poorly defined. We examined data from a prospective SARS-CoV-2 cohort study to address these questions. Serostatus, body mass index, demographics, comorbidities, and prior COVID-19 compatible symptoms were assessed at baseline and serostatus and symptoms monthly thereafter. SARS-CoV-2 immunoassays included an IgG ELISA targeting the spike RBD, multiarray Luminex targeting 20 viral antigens, pseudovirus neutralization, and T cell ELISPOT assays. Our results from a large prospective SARS-CoV-2 cohort study indicate symptom phenotype is strongly influenced by obesity among younger but not older age groups; we did not identify evidence to suggest obese individuals are at higher risk of SARS-CoV-2 infection; and remarkably homogenous immune activity across BMI categories suggests immune protection across these groups may be similar.


Subject(s)
Antibodies, Viral/blood , COVID-19/complications , COVID-19/immunology , Obesity/complications , Obesity/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Age Factors , Body Mass Index , COVID-19/epidemiology , COVID-19/physiopathology , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Risk Factors , SARS-CoV-2/immunology , Young Adult
16.
Mol Biol Evol ; 39(1)2022 01 07.
Article in English | MEDLINE | ID: covidwho-1475820

ABSTRACT

Although some variation introgressed from Neanderthals has undergone selective sweeps, little is known about its functional significance. We used a Massively Parallel Reporter Assay (MPRA) to assay 5,353 high-frequency introgressed variants for their ability to modulate the gene expression within 170 bp of endogenous sequence. We identified 2,548 variants in active putative cis-regulatory elements (CREs) and 292 expression-modulating variants (emVars). These emVars are predicted to alter the binding motifs of important immune transcription factors, are enriched for associations with neutrophil and white blood cell count, and are associated with the expression of genes that function in innate immune pathways including inflammatory response and antiviral defense. We combined the MPRA data with other data sets to identify strong candidates to be driver variants of positive selection including an emVar that may contribute to protection against severe COVID-19 response. We endogenously deleted two CREs containing expression-modulation variants linked to immune function, rs11624425 and rs80317430, identifying their primary genic targets as ELMSAN1, and PAN2 and STAT2, respectively, three genes differentially expressed during influenza infection. Overall, we present the first database of experimentally identified expression-modulating Neanderthal-introgressed alleles contributing to potential immune response in modern humans.


Subject(s)
Genetic Variation , Genome, Human , Immunity, Innate/genetics , Neanderthals , Animals , Gene Expression , Humans , Inflammation , Neanderthals/genetics
17.
Cell ; 184(15): 3962-3980.e17, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1252549

ABSTRACT

T cell-mediated immunity plays an important role in controlling SARS-CoV-2 infection, but the repertoire of naturally processed and presented viral epitopes on class I human leukocyte antigen (HLA-I) remains uncharacterized. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two cell lines at different times post infection using mass spectrometry. We found HLA-I peptides derived not only from canonical open reading frames (ORFs) but also from internal out-of-frame ORFs in spike and nucleocapsid not captured by current vaccines. Some peptides from out-of-frame ORFs elicited T cell responses in a humanized mouse model and individuals with COVID-19 that exceeded responses to canonical peptides, including some of the strongest epitopes reported to date. Whole-proteome analysis of infected cells revealed that early expressed viral proteins contribute more to HLA-I presentation and immunogenicity. These biological insights, as well as the discovery of out-of-frame ORF epitopes, will facilitate selection of peptides for immune monitoring and vaccine development.


Subject(s)
Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/immunology , Open Reading Frames/genetics , Peptides/immunology , Proteome/immunology , SARS-CoV-2/immunology , A549 Cells , Alleles , Amino Acid Sequence , Animals , Antigen Presentation/immunology , COVID-19/immunology , COVID-19/virology , Female , HEK293 Cells , Humans , Kinetics , Male , Mice , Peptides/chemistry , T-Lymphocytes/immunology
18.
J Clin Pathol ; 74(8): 496-503, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1247388

ABSTRACT

Developing and deploying new diagnostic tests are difficult, but the need to do so in response to a rapidly emerging pandemic such as COVID-19 is crucially important. During a pandemic, laboratories play a key role in helping healthcare providers and public health authorities detect active infection, a task most commonly achieved using nucleic acid-based assays. While the landscape of diagnostics is rapidly evolving, PCR remains the gold-standard of nucleic acid-based diagnostic assays, in part due to its reliability, flexibility and wide deployment. To address a critical local shortage of testing capacity persisting during the COVID-19 outbreak, our hospital set up a molecular-based laboratory developed test (LDT) to accurately and safely diagnose SARS-CoV-2. We describe here the process of developing an emergency-use LDT, in the hope that our experience will be useful to other laboratories in future outbreaks and will help to lower barriers to establishing fast and accurate diagnostic testing in crisis conditions.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Emergency Service, Hospital , Laboratories, Hospital , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , COVID-19/virology , Humans , Predictive Value of Tests , Reproducibility of Results
19.
Cell Host Microbe ; 29(5): 689-703, 2021 05 12.
Article in English | MEDLINE | ID: covidwho-1207013

ABSTRACT

Despite numerous viral outbreaks in the last decade, including a devastating global pandemic, diagnostic and therapeutic technologies remain severely lacking. CRISPR-Cas systems have the potential to address these critical needs in the response against infectious disease. Initially discovered as the bacterial adaptive immune system, these systems provide a unique opportunity to create programmable, sequence-specific technologies for detection of viral nucleic acids and inhibition of viral replication. This review summarizes how CRISPR-Cas systems-in particular the recently discovered DNA-targeting Cas12 and RNA-targeting Cas13, both possessing a unique trans-cleavage activity-are being harnessed for viral diagnostics and therapies. We further highlight the numerous technologies whose development has accelerated in response to the COVID-19 pandemic.


Subject(s)
COVID-19/diagnosis , CRISPR-Cas Systems , SARS-CoV-2/isolation & purification , COVID-19/therapy , Humans , Mutation , RNA, Circular/genetics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL